
H2020-ICT-2018-2-825377

UNICORE

UNICORE: A Common Code Base and Toolkit for Deployment of

Applications to Secure and Reliable Virtual Execution Environments

Horizon 2020 - Research and Innovation Framework Programme

D5.2 Initial Deployment

Due date of deliverable: August 31, 2020

Actual submission date: August 31, 2020

Start date of project January 1, 2020

Duration 36 months

Lead contractor for this deliverable Consorci de Serveis Universitaris de Catalunya

(CSUC)

Version 1.0

Confidentiality status ”Public”

c© UNICORE Consortium 2020 Page 1 of (31)

Abstract

The goal of the EU-funded UNICORE project is to develop a common code-base and toolchain that will

enable software developers to rapidly create secure, portable, scalable, high-performance solutions starting

from existing applications. The key to this is to compile an application into very light-weight virtual

machines – known as unikernels – where there is no traditional operating system, only the specific bits of

operating system functionality that the application needs. The resulting unikernels can then be deployed

and run on standard high-volume servers or cloud computing infrastructure.

The technology developed by the project will be evaluated in a number of trials, spanning several appli-

cation domains. This document details the initial deployment status for each of the use-cases, describing

the original plan, the current status of the deployment, the issues encountered and the features used during

months 12-18. Also the document details the progress done in regards Unikernels security on lightweight

virtualization.

Target Audience

The target audience for this document is the general public interested in UNICORE solution and use-case

validations.

Disclaimer

This document contains material, which is the copyright of certain UNICORE consortium parties, and may

not be reproduced or copied without permission. All UNICORE consortium parties have agreed to the full

publication of this document. The commercial use of any information contained in this document may require

a license from the proprietor of that information.

Neither the UNICORE consortium as a whole, nor a certain party of the UNICORE consortium warrant that

the information contained in this document is capable of use, or that use of the information is free from risk,

and accept no liability for loss or damage suffered by any person using this information.

This document does not represent the opinion of the European Community, and the European Community is

not responsible for any use that might be made of its content.

Page 2 of (31) c© UNICORE Consortium 2020

Impressum

Full project title UNICORE: A Common Code Base and Toolkit for Deployment of Ap-

plications to Secure and Reliable Virtual Execution Environments

Title of the workpackage WP5 - Unikernels in Practice

Editor Consorci de Serveis Universitaris de Catalunya (CSUC)

Project Co-ordinator Emil Slusanschi, UPB

Technical Manager Felipe Huici, NEC

Copyright notice c© 2020 Participants in project UNICORE

c© UNICORE Consortium 2020 Page 3 of (31)

Executive Summary
The Work Package 5 within the UNICORE project is responsible for the validation of UNICORE krafting

solutions in specific application areas. This Deliverable 5.2 Initial Deployment - Intermediate contains a

detailed report of Initial Deployment of real world UNICORE use-cases identified in deliverable D2.3. This

report gives for each of six use-cases belonging to the four application domains a short summary of the

expected plan at the beginning and focus on the current deployment status by describing the state of each of

the use-case and identifying the different difficulties and lack of features found during the implementations

in order to fed back the Core WPs. Also it is important to remark the WP3 and WP4 developed features

and tools used in the deployment workflow. Also it focus on the enhancements performed to improve the

security in lightweight virtualization environments by using the address space isolation techniques that will

be integrated in the future.

Page 4 of (31) c© UNICORE Consortium 2020

List of Authors
Author Ioan Constantin (ORO), Marius Iordache (ORO), Cristian Patachia (ORO) Franck Messaoudi (OA),

Thierry Masson (OA) , Stephen Parker (XLRN), Esteban Martinez (CSUC), Xavier Peralta (CSUC),

Gabriele Scivoletto (NXW), Gino Carrozzo (NXW), Cristina Basescu (EPFL), Gaylor Bosson

(EPFL), Felipe Huici (NEC), Radu Stoenescu (CNW), Razvan Deaconescu (UPB), Emil Slusan-

schi (UPB), Mike Rapoport (IBM)

Participants ORO, CSUC, OA, NXW, EPFL, NEC, UPB, CNW, IBM

Work-package WP5 - Unikernels in Practice

Security PUBLIC

Nature R

Version 1.0

Total number of pages 31

c© UNICORE Consortium 2020 Page 5 of (31)

Contents

Executive Summary 4

List of Authors 5

List of Figures 8

List of Tables 9

Acronyms 10

1 Introduction 13

2 Use-cases’ Initial Deployment 14

2.1 Serverless Computing . 14

2.1.1 Original Plan . 14

2.1.2 Deployment Status . 14

2.1.3 Implementation Issues . 14

2.1.4 Core WP Features Involved . 15

2.2 Network Function Virtualization . 16

2.2.1 Broadband Network Gateway for wired Internet Access 16

2.2.1.1 Original Plan . 16

2.2.1.2 Deployment Status . 16

2.2.1.3 Implementation Issues . 17

2.2.1.4 Core WP Features Involved . 18

2.2.2 Wireless 5G vRAN NFV Clusters . 18

2.2.2.1 Original Plan . 18

2.2.2.2 Deployment Status . 19

2.2.2.3 Implementation Issues . 19

2.2.2.4 Core WP Features Involved . 19

2.2.3 SDWAN Controller Key Server and vCPE as Unikernels 20

2.2.3.1 Original Plan . 20

2.2.3.2 Deployment Status . 21

2.2.3.3 Implementation Issues . 22

2.2.3.4 Core WP Features Involved . 22

2.3 Home Automation and IoT . 25

2.3.1 Original Plan . 25

Page 6 of (31) c© UNICORE Consortium 2020

2.3.2 Deployment Status . 26

2.3.3 Implementation Issues . 27

2.3.4 Core WP Features Involved . 27

2.4 Smart Contracts . 28

2.4.1 Original Plan . 28

2.4.2 Deployment Status . 28

2.4.3 Implementation Issues . 29

2.4.4 Core WP Features Involved . 29

3 Host OS Security Enhancement 30

4 Conclusions 31

c© UNICORE Consortium 2020 Page 7 of (31)

List of Figures

2.1 CSUC use-case execution . 15

2.2 ORO Monolithic vBNG Scenario . 16

2.3 Initial deployment of the key server as Unikernel . 21

2.4 Table of issues faced by Ekinops and its status . 22

2.5 Symphony Unikernel Screenshots . 26

2.6 Table of issues faced by Nextworks and its status . 27

Page 8 of (31) c© UNICORE Consortium 2020

List of Tables

2.1 list of Unikraft libraries used by Pillow . 15

2.2 List of tools and libraries used in the Key Server Unikernel build process 23

2.3 List of Ekinops krafted libraries . 24

2.4 List of libraries used by Nextworks symphony . 27

c© UNICORE Consortium 2020 Page 9 of (31)

Acronyms

ABI Application Binary Interface

API Application Programming Interface

AMQP Advanced Message Queuing Protocol

ARM Advanced RISC Machines

ASLR Address Space Layout Randomisation

AWS Amazon Web Services

BPF Berkley Packet Filter

BMS Building Management System

BNG Broadband Network Gateway

CLI Command Line Interface

CPE Customer Premises Equipment

CPU Central Processing Unit

CNW Correct Networks SRL

CSUC Consorci de Serveis Universitaris de Catalunya

CVE Common Vulnerabilities and Exposures

DALI Digital Addressable Lighting Interface

DEDIS Decentralized and Distributed Systems

DHCP Dynamic Host Configuration Protocol

DMA Direct Memory Access

DOS Denial Of Service

DPDK Data Plane Development Kit

dRIC dRAX RAN Intelligent Controller

DSL Digital Subscriber Line

DU Distributed Unit

DUT Device Under Test

EAD Ethernet Access Devices

eBPF extended Berkley Packet Filter

ELF Executable and Linkable Format

EPC Evolved Packet Core

EPFL cole Polytechnique Fdrale de Lausanne

EVM Ethereum Virtual Machine

FPU Floating Point Unit

GDOI Group Domain of Interpretation

GPU Graphics Processing Unit

Page 10 of (31) c© UNICORE Consortium 2020

HA High Availability

HAL Hardware Abstraction Layer

HVAC Heating, Centilation, and Air Conditioning

IoT Internet of Things

IP Internet Protocol

IPSec IP security

ISP Internet Service Provider

KPI Key Performance Indicator

KVM Kernel-based Virtual Machine

LTE Long Term Evolution

MANO Management and Orchestration

MCAPI Multicore Communications API

MPLS Multiprotocol Label Switching

MSAR Multi-Service Access Routers

MQTT Message Queuing Telemetry Transport

NAT Network Address Translation

NATS Neural Autonomic Transport System

NIC Network Intercace Card

NF Network Function

NFV Network Function Virtualisation

OCI Open Containers Initiative

ODM Original Design Manufacturer

ONAP Open Network Automation Protocol

ONVIF Open Network Video Interface Forum

OPC Open Platform Communications

OPC-UA OPC Unified Architecture

OS Operating System

PBFT Practical Byzantine Fault Tolerance

pCPE physical CPE

PLR Packet Loss Ratio

PNF Physical Network Function

POS Performance Oriented Scheduler

PTZ Pan Tilt Zoom

QoS Quality of Service

RAM Random Access Memory

c© UNICORE Consortium 2020 Page 11 of (31)

RAN Radio Access Network

Redis REmote Dictionary Server

REST REpresentational State Transfer

RGB Red Green Blue

RRD Round Robin Database

RTU Remote Terminal Unit

S3 Simple Storage Service

SCF Smart Contract File

SCTP Stream Control Transmission Protocol

SDN Software Defined Networking

SDWAN Software Defined Networking in a Wide Area Network

SIP Session Initiation Protocol

SNMP Simple Network Management Protocol

SQL Structured Query Language

TCP Transmission Control Protocol

TRL Technology Readiness Level

UDP User Datagram Protocol

UE User Equipment

UI User Interface

UIT Universitat Internacional de Catalunya

pCPE virtual CPE

vCPE virtual CPU

VM Virtual Machine

VMM Virtual Machine Monitor

VoD Video on Demand

VoIP Voice Over Internet Protocol

VNF Virtual Network Function

vRAN virtualised Radio Access Network

XDP eXpressive Data Path

Page 12 of (31) c© UNICORE Consortium 2020

1 Introduction
This document is the deliverable D5.2 of the UNICORE project. Its purpose is to detail the results of the

initial deployment of the core project tools and use-cases by explaining a summary of the original plan, the

current deployment state, what problems have been found and what functionalities have been used or are

missing. This input will be fed back to the core WP in order to further refine the UNICORE tools to meet the

demands of the projects use-cases This report is structured in three chapters, which are:

Chapter 1 provides an introduction to the rest of the document.

Chapter 2 provides a detail of the initial deployment for the six use-cases by providing the expected plan, the

current state of the deployment, the different issues found in the implementation and the features developed

in the core WPs used.

Chapter 3 explains how to enchance the security when running unikernels in containers

Chapter 4 summarizes what has been achieved in this document, identifying shortcomings in order to improve

and solve the problems face in the future.

c© UNICORE Consortium 2020 Page 13 of (31)

2 Use-cases’ Initial Deployment

2.1 Serverless Computing

2.1.1 Original Plan

As stated in the deliverables 2.1 and 5.1 CSUC use-case is focused on the process to convert the images before

uploading them to the repositories. In order to leverage the Unikernel technology and Unikraft tools CSUC

designed a new methodology based on serverless computing by launching a function per image conversion

and storing it on an S3 bucket.

The issues identified to build image conversion serverless solution in a Unikernel environment are:

• Build an image conversion Unikernel using the Kraft Tool

This step requires to port the libraries needed by Pillow and S3FS and integrate them on the Kraft Tool

in order to build a Unikernel image using Kraft.

• Performance and Testing

After the creation of the Unikernel image, it will be validated to see if it meets the requirements, the

performance and the consolidation.

• Automation and orchestration

The final solution has to be capable of run in an environment which can execute a function automatically

when a new file is in the input bucket.

2.1.2 Deployment Status

During the months 12-18 we focused on the pillow library dependencies and by now it is possible to build a

unikernel image with Kraft Tool which can process the formats like jpeg, png and tiff. It is also capable of

using the CMS for color management. The figure 2.1 shows a unikernel execution creating a thumbnail of an

image.

A new application that employs a kraft tool of unicore has been generated for jpeg image resize and the next

steps will be to support the rest of pillow functionalities and to support the S3 protocol by using the boto3

library in order to read and store the images.

After testing the different functionalities needed the next step is to develop the tool capable of run like a

function as a service and integrate it in an orchestrator which permits to execute the function automatically.

At the end we are in the first phase of deployment process testing unikernels builds with every library ported.

2.1.3 Implementation Issues

With the creation of the Kraft Tool some parameters for unikernel generation were not valid anymore so it

was needed to use the Kraft Tool to run them. Because of this, the external libraries have to be in a remote

Unikraft repository in order to use them in the Unikernel build time. In order to test the different new libraries

Page 14 of (31) c© UNICORE Consortium 2020

Figure 2.1: CSUC use-case execution

ported and because of them were not available on the remote repository these had to be added manually to

Unikraft Core.

Other challenges have been found fixing the errors encountered during the library compilation for the use-

case due to some lack of information that has been solved quickly. Also the generation of the code patches in

the downloaded libraries to work properly in a unikernel environment has been quite tricky.

2.1.4 Core WP Features Involved

As we are still in the first phase of the use-case CSUC has only used partial core WP Features like some

libraries which are dependencies of Pillow and list in the following table 2.1

TOOL/LIBRARY VERSION
unikraft 0.4
lib-lwip 0.4
lib-Python3 0.4
lib-pthread-embedded 0.4
lib-newlib 0.4

Table 2.1: list of Unikraft libraries used by Pillow

c© UNICORE Consortium 2020 Page 15 of (31)

2.2 Network Function Virtualization

2.2.1 Broadband Network Gateway for wired Internet Access

2.2.1.1 Original Plan

Oranges Initial deployment plan for the Unikernel BNG has two distinct phases - a move, test and validation

cycle from the currently-deployed Physical BNG followed by a deployment, test and validation of a virtual-

ized BNG infrastructure based on Unikernels for the BNG services and components. As per the description

in D5.1 - Deployment Plan, Requirements and Business Cases, Oranges plan consist of successfully moving

from a Physical BNG to a virtualized BNG with decomposed micro-services, allowing a fine-grain control

of distribution and usage scenarios. Finally, all deployments - Physical BNG, monolithic virtual BNG and

Unikernel, decomposed micro-services BNG will be tested against the KPIs set forth in D2.1 and D5.1 and

the results will be compared to show differences of moving horizontally across deployment type, validating

the improvements in using Unikernels.

2.2.1.2 Deployment Status

The second important phase of our transitioning process from the hardware Broadband Network Gateway

(BNG) to a completely virtualized, disaggregate and on-demand BNG service is commissioning and testing

a Monolithic BNG instance on a virtualized environment. A Virtualized Monolithic BNG is essentially the

same BNG instance from the OS layer upwards - it maintains its OS structure, functions and applications; the

major change is the abstractization of the underlying Physical Layer with a virtualized layer on top of a Type

1 or Type 2 Virtualization Hypervisor.

Figure 2.2: ORO Monolithic vBNG Scenario

As specified in the figure 2.2, we are at the second step of our objective, marked by a virtualization of the

underlying physical layer of the Monolithic BNG setup. We have deployed our Monolithic Virtual BNG

instance on top of our existing virtualized framework, hosted on hardware specifically allocated for telecom

research projects, within one of Orange Romanias lab environments. The vBNG software used for deploy-

ment was the Nokia 7750 Virtualized Service Router (Nokia 7750 VSR), release 20.2.R1 and the virtualized

Page 16 of (31) c© UNICORE Consortium 2020

infrastructure used for provisioning the vBNG is OpenStack Ocata.

We provisioned the Virtualized Infrastructure in six distinct steps:

(i) Optimization of BIOS and Linux Kernel Settings

(ii) Resource Allocation of Compute Node

(iii) Nova Scheduler Parameter Implementation

(iv) Enable CPU Pinning and SR-IOV on OpenStack Controller and Compute Node

(v) Create Volume Drive using Cinder

(vi) Create Nova Flavor for Monolithic vBNG Nokia 7750 VSR

Following this second phase in implementation, Orange will move to the third and final stage, running a

decomposed BNG provided by CNW atop a bare metal deployment in Oranges Test bed. This third phase is

scheduled to begin by End of Month 20 of the project with an implementation time of two months. For this

weve established remote access capabilities with CNW, allowing monitored remote access to Oranges Test

bed components that are going to be used to host the Unikerneld services.

2.2.1.3 Implementation Issues

One of the constraints that we came across when provisioning the VM (at least on the setup we have in place,

based on OpenStack Ocata), were that the VM provisioning would not finalize if we had not set up CPU

Pinning and a Single root I/O virtualization (SR-IOV). The dedicated compute node from which we have

allocated the resources for the vBNG is based on the Skylake SP Intel infrastructure (using 6xxx or 8xxx

Intel Xeon processors).

CPU Pinning

In order to achieve optimal performance on the vBNG instance the following CPU Pinning Best Practices

had to be implemented: each vCPU was pinned to a hardware CPU of the single NUMA node; the first 2

vCPUs were pinned to sibling threads on the same Physical CPU Core, the next 2 vCPUs were pinned to

sibling threads on the next Physical CPU Core and so on.

SR-IOV

Single root I/O virtualization (SR-IOV) is a PCI-SIG standard that allows a single physical Ethernet port

to appear as multiple separate physical devices, each device associated with its own PCIe function called a

Virtual Function (VF). In a Network Function Virtualization host (in this case the Monolithic vBNG), the

hypervisor can assign Virtual Functions to Virtual Machine so that they appear as vNIC interfaces to the

vBNG.

SR-IOV enables almost bare-metal I/O performance because data is transferred directly using Direct Memory

Access (DMA) between the NIC hardware and guest memory (with address translation provided by Intel VT-

d).

c© UNICORE Consortium 2020 Page 17 of (31)

The vNIC interfaces were set with VirtIO, E1000, or VMXNET3 drivers, as requested by the Nokia 7750

VSR manual. When the VSR VM uses a VirtIO, E1000, or VMXNET3 driver for one of its vNIC interfaces

(ports), the abstraction provided by the hypervisor allows any type of physical NIC to be used to transport the

traffic associated with the vNIC interface.

2.2.1.4 Core WP Features Involved

As we have not, as of yet, reached our phase 3 for implementation of an Unikernel BNG, Orange has not

used any core WP Features. The activities that are going to involve the using of core UNICORE features

are scheduled to begin by end of Month 20 and all activities will follow the initial implementation planning,

KPIs and Objectives as set in D2.1 and D5.1

2.2.2 Wireless 5G vRAN NFV Clusters

2.2.2.1 Original Plan

As mentioned in D2.1 and D5.1 the telecom world is in the middle of a transformative shift away from mono-

lithic RAN solutions running on proprietary hardware towards disaggregated and virtualized open solutions

running on COTS hardware. Many attempts at virtualizing RAN deployments consist of virtualizing a mono-

lithic software application that was originally running on the BBU and getting it cross-compiled and running

as a monolithic entity on a server in a data centre. These deployments typically consist of a single application

executing in a Virtual Machine or perhaps even a Docker container. This addresses the virtualisation aspect

of the problem but it does not address the open aspect i.e. the deployed system will still likely contain propri-

etary mechanisms and will not interact with systems supplied by alternate vendors. Equally, such monolithic

deployments do not scale well as typically different aspects of a RAN system will scale orthogonally. Ac-

celleran is committed to developing 4G and 5G RAN solutions based on general-purpose, vendor-neutral

hardware with open north and south bound software interfaces.

Accelleran has identified several key issues that need to be addressed to tackle the problem of deploying

disaggregated microservices using Unikernels:

• Portable software code that is platform agnostic.

• Extracting and isolating key software modules that scale orthogonally.

• An intra-module communication mechanism that is neutral to the underlying hardware architecture.

• A distributed data store that allows disaggregated components to share a common configuration, state

and data set.

Software portability can be addressed by effective use of coding standards e.g. MISRA. Accelleran has

identified key 5G gNB CU RAN microservice components which scale orthogonally, for example;

(i) ngInterface - 1 per Core Network connection - potentially up to 6 in a given neutral host deployment.

Page 18 of (31) c© UNICORE Consortium 2020

(ii) gNB Controller - 1 per 5G base station with potentially hundreds of gNBs deployed in a single network.

(iii) UE Data Session Controller - 1 per active UE with potentially 1000s in a network deployment.

For intra-module communication Accelleran will use YANG for message definitions, Google Protobuf for

message serialisation and NATS as a publish-subscribe microservice message exchange mechanism. Redis

will be used to provide a distributed, in-memory keyvalue datastore.

2.2.2.2 Deployment Status

Due to the sheer complexity of RAN software - typical systems can often run into millions of lines of code -

Accelleran is taking an iterative approach to deploying a disaggregated, virtualized, open 5G RAN. The steps

involved can be summarised as follows:

(i) Identify key microservice components. This aspect is complete and as mentioned above components

consist of e.g. the ngInterface, the gNB Controller and the UE DS Controller.

(ii) Define the (message-based) interfaces between these components in YANG and implement Protobuf

message encoders and decoders. This stage is also complete although future development will entail

the definition of new messages and their corresponding YANG definitions and Protobuf encode and

decode functions.

(iii) Instantiate the microservice components identified above as Docker containers that can be orchestrated

using Kubernetes. This step can be considered to be an intermediate step in that the end goal is not to

use Docker containers, however, as Docker containers are a reasonably mature and well documented

and understood technology, it was deemed to be a sensible interim step as it was felt that trying to

deploy 5G RAN microservices directly in Unicore Unikernels would add unnecessary complexity.

This step is in progress.

(iv) Convert the microservice Docker containers into Unikernels that can be orchestrated using Kubernetes.

Once the 5G RAN CU is shown to work in terms of orchestration and message routing etc., the plan

is to convert the microservice Docker containers into more optimal Unicore Unikernels. This step has

not yet started.

2.2.2.3 Implementation Issues

The implementation issues identified and addressed to date are not specific to Unicore Unikernels but are

more down to the complexity of splitting a pre-configured monolithic software block into independently de-

ployable, scalable and addressable microservices e.g. message routing and delivery is a particularly complex

problem when ”publishers” and ”subscribers” are not known in advance.

2.2.2.4 Core WP Features Involved

As Accelleran has yet to start converting the microservice Docker containers into Unicore Unikernels, no Core

WP features are currently involved in our deployment but the key requirements have been identified both here

c© UNICORE Consortium 2020 Page 19 of (31)

in this document and more extensively in D2.1, namely; support for standard OS primitives, networking and

libc support and support for third party software, such as Redis, NATS and Protobuf.

2.2.3 SDWAN Controller Key Server and vCPE as Unikernels

2.2.3.1 Original Plan

As stated in D2.1 and D5.1, Ekinops has selected two use cases to be built as Unikernels namely; SDWAN

Controller Key Server as Unikernel and the vCPE based Unikernel. In what follows, we use interchangeably

the SDWAN Controller Key Server and Key Server.

The Key Server and vCPE as Unikernel use cases have been described in the previous deliverables (D2.1

and D5.1) in which, the functional and non-functional requirements, the used infrastructure, as well as the

management and orchestration process were highlighted. Please refer to these documents (i.e, D2.1 and D5.1)

for details concerning these two use cases. In what follows, we are more interested in the roadmap for these

use cases. As the Key Server use case is more advanced in the process of Unikernel building compared with

the Unikernel based vCPE use case, hence our focus in this document will be more on this first use case (i.e,

Key Server as Unikernel).

The plan that has been drawn for this use case is split into three main activities:

• First Activity: Krafting the Key Server

In this first activity, we have identified the functionalities for the SDWAN Controller that should be

used. We restrained the choice to the Key Server functionality that is responsible for the establishment

of VPN tunnels between (v)CPEs, therefore this functionality manages the encryption keys to be used

when new VPN tunnels need to be instantiated between (v)CPEs. Next, the Key Server functionality

with the required libraries will be KRAFTED.

• Second Activity: Performance evaluation

After the Key Server based Unikernel has been built correctly. Its behaviour will be validated and com-

pared to the Key Server functionality when it is run as Docker Container or as a standalone application.

Only after that will be considered the benchmarking and performance evaluation. A test campaign will

be performed with a focus on the scalability KPI as we are interested in the number of (v)CPEs that

can be managed by the same Key Server.

• Third Activity: Orchestration, On-demand Deployment, and Upgrade

This is the last step for this use case. The built Unikernel will be considered as a VNF that will be

orchestrated using an NFV Orchestrator such as OSM or ONAP, and deployed on-demand. As a wish,

we would like also to integrate this unikernel in the entire SDWAN solution.

For our second use case vCPE as Unikernel, we have identified exactly the same activities; from KRAFTING

the data plane of the vCPE to the build of the Unikernel, its orchestration, and its dynamic deployment. Here

also, we would like to integrate the built unikernel in the Ekinops solutions like SDWAN.

Page 20 of (31) c© UNICORE Consortium 2020

Currently, for the first use case, we are at the second activity, where the behaviour of the built Unikernel is

under validation. Concerning the second use case, we are at the end of the first activity as several libraries

have already been KRAFTED, however we need to KRAFT the data plane functionality of the vCPE.

2.2.3.2 Deployment Status

It is much difficult at this stage to provide an exact status for the use case deployment as we are still in a

debugging phase. However, what we are sure about at the time being is:

• All the needed libraries are KRAFTED and compiling without compilation errors.

• Several libraries unit tests are succeed.

• The application itself is KRAFTED and correctly compiled.

• The Unikernel boots correctly and starts the IPSECMD task.

• The SSL and Crypto libs are initialized.

To sum up, at this stage we are testing the key server behaviour.

Figure 2.3 depicts a very initial deployment of the first use case SDWAN Controller Key Server as Unikernel.

Figure 2.3: Initial deployment of the key server as Unikernel

Concerning the second use case; the Unikernel based vCPE, The first step has been done. This step consists of

KRAFTING the required libraries, including DPDK, IPSEC, PROTOCOLS, and ROUTE libraries. The next

step is to KRAFT the data plane of the vCPE and then build the Unikernel as well as checking its behaviour.

c© UNICORE Consortium 2020 Page 21 of (31)

2.2.3.3 Implementation Issues

During the process of porting libraries to UNIKRAFT and building of the Unikernel, we faced several chal-

lenges. Some of them were solved, and some others are under investigation. Table 2.4 describes the most

representative issues for the use case SDWAN Controller Key Server as Unikernel.

Figure 2.4: Table of issues faced by Ekinops and its status

The second use case Unikernel based vCPE is not completely KRAFTED, the work in progress. Therefore, at

this stage we can say that the most relevant implementation issue was the incompatibility of several libraries

used by the data plane that are linux-specific with the NewlibC, which is a generic one.

2.2.3.4 Core WP Features Involved

During the building process of the Unikernel, we have used the following tools and libraries represented in

Table 2.2.

Page 22 of (31) c© UNICORE Consortium 2020

TOOL/LIBRARY VERSION
unikraft 0.4
Newlib 0.4
Openssl 1.02q
lib-lwip 2.1.2
freeradius-client 1.1.6.orig
9PFS 0.4
devfs 0.4
Unity 1.0
arch al* r3 9pa2
orgfs* r5 11pa0
netns* r1 1pa14

Table 2.2: List of tools and libraries used in the Key Server Unikernel build process

For the complete version of the SDWAN controller, we have KRAFTED the following list of libraries shown

in Table 2.3. Currently, we are testing the Key Server functionality. The complete version of the SDWAN

Controller contains several other functions that we may not need. Indeed, as the main tools and libraries are

still under development and debugging (such as, UNIKRAFT, Newlibc, musl, lwip), considering the entire

functionalities will increase the complexity of the unikernel building process and therefore debugging will be

very arduous. However, we believe that doing this exercise KRAFTING very different libraries (even some

of these libraries may not be used for this use case) is very useful for the rest of the project. Indeed, several

of these libraries already KRAFTED will be used in our second use case (i.e., Unikernel based vCPE).

c© UNICORE Consortium 2020 Page 23 of (31)

LIBRARY VERSION LIBRARY VERSION
pyang r1 2pa0 cplib evdelegate r1 1pa12
arch al r3 9pa2 cplib zthreadutil r2 2pa13
orgfs r5 11pa0 libevent r1 1pa18

protocols r4 31pa0 cp evloop r2 2pa14
ipsec dpapi r10 12pa0 cpdm cliroot r5 5pa3

memory al api r1 1pa8 cpdm ifmmgr :r42 49pa2
netnslib r1 1pa14 cpdm crypto :r1 10pa9
cplib log r1 1pa18 osal api r1 3pa0

cplib hash r1 1pa14 soc core r7 7pa0
usdpaa r3 4pa3 multicore lib r10 14pa0

soc info r3 6pa2 mem pool :r1 3pa17
memory al r1 1pa26 oamcapi arch r5 15pa0
mem lib r3 6pa17 ipsec msg r4 4pa9

osal r1 4pa1 tp openssl r2 2pa13
sys utils r15 16pa1 cptplib dsutil r1 1pa12
util lib r19 22pa3 oasystemd r8 8pa18

oamcapi r2 3pa7 cplib confdlib r1 13pa1
pkt r34 37pa0 trc pki r2 2pa1

cplib ifmg r3 22pa2 trc user routing r1 1pa6
cplib zinclude r1 1pa15 trc event data r1 6pa0

cptplib ztlv r1 1pa10 cplib aclmgr r8 10pa0
cptplib zvector r1 1pa14 cplib trapd r1 2pa1

liburcu r1 1pa14 cplib routeinterface r1 4pa7
lttng ust r1 3pa7 encaps msg r9 9pa1
trc ipsec r1 1pa6 encaps oper lib r26 33pa0

flib r1 1pa5 cp devcon r1 6pa13
cpdm prefixlist r1 1pa26 cplib dnshelper r1 1pa62

cpdm route r1 2pa4 addrpools r1 1pa6
cptplib zutils r11 14pa3 cplib messageutil r1 1pa26

pki r2 3pa8 cplib vrfmgr r1 8pa7
cptp pammodule r2 3pa4 trctool r1 1pa12

dma userspace driver r1 2pa1 cplib aaa r3 4pa0

Table 2.3: List of Ekinops krafted libraries

Page 24 of (31) c© UNICORE Consortium 2020

2.3 Home Automation and IoT

2.3.1 Original Plan

The Home Automation and IoT use case is based on the integration of some unikernel-based functions in the

Nextworks Smart Home and Smart Building Management platform called Symphony. As initially described

in D2.1 and D5.1, some of the many Symphony platform functionalities can be considered for migration to

unikernel, in order to implement new scenarios with tiny virtual functions instead of standard VMs. The

strategy initially adopted for the deployment and validation in this use case has been described in D5.1 and

based on the following three stages/phases:

• Stage 1. Functional Validation: functional validation of the krafted function w.r.t. the original one.

• Stage 2. Performance Evaluation: benchmarking operations in terms of speed, number of operations,

throughput etc.

• Stage 3. Automation and Upgrade: evaluation of the feasibility and potential benefits of automatic

deployments based on run-time unikernel generation.

Due to the complexity of the Symphony code base in terms of modules dedicated to implement various IoT

control functions, their required libraries to access system resources and the links to third-party application,

and due to the ongoing development in UNIKRAFT of many of such system primitives and libraries, the

selection of the first Symphony modules to be ported to unikernels focused on those elements which showed

the simpler dependency graph and required libraries just supported by UNIKRAFT.

As such, the original plan defined in D5.1 was structured to experiment:

• By this deliverable D5.2 (Aug 2020)

(i) Symphony Event Reactor module.

(ii) Symphony MQTT driver module.

• By the end of the project, i.e. for D5.3 (Dec 2021)

(i) Symphony environmental sensor driver.

(ii) Symphony lightning driver.

(iii) Symphony energy monitor module.

(iv) Network Firewall.

Therefore, in scope of activities reported in this deliverable, the krafting and functional validation (stage 1)

of Symphony Event Reactor and the MQTT driver was done.

c© UNICORE Consortium 2020 Page 25 of (31)

2.3.2 Deployment Status

The deployment of Symphony Event Reactor and the MQTT driver function in unikernels, was carried out in

three pipelines activities:

(i) Krafting via UNIKRAFT of the selected module and instantiation in Symphony testbed at Nextworks.

(ii) Definition of functional tests to validate the krafted Symphony function.

(iii) Execution of the validation tests.

The krafting of the two selected functions required at first software adaptation, in order to remove from the

original codebase all the unused objects and library functions which enlarged the dependency graph and

which were not supported by UNIKRAFT. Then, once the module was ready to be krafted/compiled, a phase

of code fixing/adjustment and compiler tuning was started in order to obtain a running executable. During

this process, several issues have been encountered, which required debugging of UNIKRAFT or compiler

configuration directives which were executed together with the UNIKRAFT developers.

For the Symphony MQTT Driver, the krafting process was successful and the function has been correctly run

in unikernels and functional tests executed. Figure 2.5 shows a simple application scenario in which MQTT

clients and broker in unikernel versions have been deployed.

Figure 2.5: Symphony Unikernel Screenshots

Page 26 of (31) c© UNICORE Consortium 2020

For the Symphony Event Reactor, krafting was successful (i.e. executable compiled) but functional validation

could not occur due to some remaining issues in UNIKRAFT, as described in the next section.

2.3.3 Implementation Issues

Next table shows the main issues that have been found during the implementation of the aforementioned Sym-

phony functions in unikernel. Some of them have been fixed while some other remain still under investigation

by the UNIKRAFT developers.

Figure 2.6: Table of issues faced by Nextworks and its status

2.3.4 Core WP Features Involved

For the development, the library and the tool version used are the following:

TOOL/LIBRARY VERSION
unikraft 0.4
lib-pthread-embedded 0.4
lib-openssl 0.4
lib-lwip 0.4
lib-zlib 0.4
lib-uuid 0.4
lib-newlib 0.4
lib-python3 0.4
paho-mqtt 1.5.0
hbmqtt 0.9.6

Table 2.4: List of libraries used by Nextworks symphony

c© UNICORE Consortium 2020 Page 27 of (31)

2.4 Smart Contracts

2.4.1 Original Plan

A distributed ledger system consists of several participants running the same application to work together on

choosing the next state of the system. It is built around multiple components responsible for different steps.

Those steps can basically be grouped in two phases:

• Ordering phase

• Validation phase

With regard to the UNICORE project, the ordering phase is out of context but for the sake of understanding

the big picture, it is good to know that it is responsible for gathering the transactions from the clients. After a

certain point in time decided by the ordering service, the transactions are ordered and batched together to be

sent to the validation service.

A transaction can be reduced to the client inputs that will be passed to the execution of a smart contract. It can

also contain more information used by the system, for example to protect against replay attacks or to prove

the identity of the client.

The validation service processes the batch of transactions created by the previous phase by going through

them one by one, or according to an order that will prevent conflicts when reading or writing the new state.

In order to do so, the service must execute the smart contracts, which can either be done natively if the smart

contract is packed alongside the distributed ledger application, or through a virtual machine that is fed with

the byte code and the different inputs.

The benefit of a native smart contract is the simplicity to write it, but it makes the system very hard to extend

or update, as a new version needs to be deployed on every node so that it learns about a new contract, or an

update of an existing one. Therefore, the distributed ledger should be able to accept smart contracts external

to the system, that will be executed through a virtual machine. It can be for instance the Ethereum Virtual

Machine (EVM), one of the numerous Web Assembly Virtual Machines (WASMVM), or a UNICORE Virtual

Machine. Those virtual machines need to provide a deterministic runtime environment to reduce the risk of

multiple executions of the same program to output different results.

2.4.2 Deployment Status

The DEDIS laboratory from EPFL has an historical framework that is used for most of the internal projects,

which means that native smart contracts were sufficient. This project aims to open the distributed ledger

system to accept smart contracts from external sources. In the scope of the WP5, a framework named Dela

has been developed based on this historical framework. It allows the system to be more modular and thus

more open to different kinds of integrations that will be tested for the UNICORE project.

The framework is in the early stage of development and recently got a review from some members of the

laboratory which was successful by showing some weaknesses, and the current work is to address those

Page 28 of (31) c© UNICORE Consortium 2020

concerns. This will allow a very naive deployment in the upcoming months with a simple smart contract

based on a unikernel. This is an important step that will allow the communication between the distributed

ledger application and a deployment of a UNICORE unikernel.

After the previous points are successful, the final step is to improve the virtual machine to accept any kind of

smart contracts so that any allowed developer can write its own using a compatible generic-purpose language

and upload it to the system. This will allow comparisons to be done against other types of virtual machines.

2.4.3 Implementation Issues

As mentioned before, a virtual machine must provide a deterministic runtime environment that is independent

from the machine it is running on. Unfortunately, our researches showed that it is impossible for a generic-

purpose language to provide such an environment because of the complexity of the properties delivered by the

language. Our conclusion is that the unikernel virtual machine must provide as much as possible deterministic

properties but it is expected that a program can produce different outputs for the same input. For the reference,

the Ethereum Virtual Machine provides a deterministic environment by forcing the language and thus the

instructions available to the developers.

This issue is one of the reasons the framework needs a deep rewrite, because it can be solved by using a

different algorithm to order and validate the transactions. The simple way of validating is to execute all the

transactions and compare the final state, but it is instead possible to validate each execution to detect which

ones are non-deterministic.

2.4.4 Core WP Features Involved

As mentioned previously, the distributed ledger system framework is developed by DEDIS to allow the vali-

dation of smart contracts running in a UNICORE virtual machine.

UPB is working on different tools that will be available to the developers to help the creation of smart con-

tracts. The unikernel can enforce some properties to be deterministic, but it is also the intent of the developer

to write a smart contract that wont produce non-deterministic outputs.

Finally, the UNICORE virtual machine is expected to support binary compatibility so that smart contracts can

be executed. It also requires a communication channel with the distributed ledger application so that input

and output can be transmitted.

c© UNICORE Consortium 2020 Page 29 of (31)

3 Host OS Security Enhancement
Unikernels are most often run in a fully virtualized environment, but lightweight virtualization (aka contain-

ers) environments are also possible. It is important to ensure security and robustness of the host environments

particularly in the light of recently discovered multiple hardware vulnerabilities.

The address space isolation in the Linux kernel techniques developed in the Unicore project can be used to

enhance the security of both virtual machines and Linux containers.

• Secret memory areas - intended for applications to store secret information, e.g. private keys, or even

the entire memory of the VM guest. Such areas can be completely unmapped from the kernel page

tables and thus visible only to the process that owns the secret memory regions.

• Address space for Linux namespaces - Linux namespaces provide logical isolation of various operating

system resources, such as mount points, system time and networking stack. The namespaces constitute

the major building block of the lightweight virtualization also known as containers. For such use case,

addition of a dedicated address space to network namespace would allow better privacy and security

for the applications and unikernels running inside the container.

For the initial deployment we plan to integrate the memfd secret() 1 system call that provides the userspace

API for the secret memory areas in Linux. The memfd secret() implementation is production ready and can

be easily ported to the Linux kernel used in the test-bed.

As the implementation of the address space for Linux namespaces will evolve we will consider its deployment

in the future versions of the test-bed.

1https://lwn.net/Articles/828026/

Page 30 of (31) c© UNICORE Consortium 2020

4 Conclusions
In this deliverable we presented a detailed report on the deployment status during the first mid year for each

WP5 use-case. The aim of the exercise is fundamental to give a detailed view of the status of the six use-

cases: serverless computing, vBNG, NFV, vRAN, Home Automation and IoT and finally smart contracts. The

detailed view consisted in describing the original plan of the deployment and its current status, explaining the

problems faced during this period and what solutions have been applied and listing the features developed in

work packages 3 and 4.

As the document explains most of the use-cases’ deployments are in the initial stage, some of them porting the

needed libraries to kraft, building and testing the resulting UNIKERNELS image. Other use-cases has been

working on the transition of a monolithic environment to a microservices environment. Also there is another

use-case working on the development of a new framework which allows the system to be more modular and

fits better in the Unicore project. The issues faced for the use-cases are most related to virtualization features

needed, krafting their application or dividing the solution into a microservices environment or deterministic

execution.

Finally the document explains how we are working to enhance the security when running Unikernels in a

lightweight virtualization.

c© UNICORE Consortium 2020 Page 31 of (31)

	Executive Summary
	List of Authors
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Use-cases' Initial Deployment
	Serverless Computing
	Original Plan
	Deployment Status
	Implementation Issues
	Core WP Features Involved

	Network Function Virtualization
	Broadband Network Gateway for wired Internet Access
	Original Plan
	Deployment Status
	Implementation Issues
	Core WP Features Involved

	Wireless 5G vRAN NFV Clusters
	Original Plan
	Deployment Status
	Implementation Issues
	Core WP Features Involved

	SDWAN Controller Key Server and vCPE as Unikernels
	Original Plan
	Deployment Status
	Implementation Issues
	Core WP Features Involved

	Home Automation and IoT
	Original Plan
	Deployment Status
	Implementation Issues
	Core WP Features Involved

	Smart Contracts
	Original Plan
	Deployment Status
	Implementation Issues
	Core WP Features Involved

	Host OS Security Enhancement
	Conclusions

