


## Evaluate the environmental impact of ICT

With open data, methods and tools





## **PRÉSENTATION**



David Ekchajzer

Research ⇒ Action

Co-founder of <u>Hubblo.org</u>

Contributor at **Boavizta.org** 







**Open-Source products**Integrate and automate environmental evaluation



**Engineering and consulting firm**Evaluate environmental impact of ICT

**Open R&D**more systemic consideration of impacts

## Boavizta - evaluation of the environmental impact of IT

#### **Working group**

Organizations
Researchers
Freelancers

#### **Themes**

Data Repository
Cloud measurement
Calculation methods
Convince top-management
Open-source tools



https://boavizta.org/

# The environmental impacts of digital technology



2020 : **2,1 to 3,9%** 

~= 7

2025 : 6 to 8%



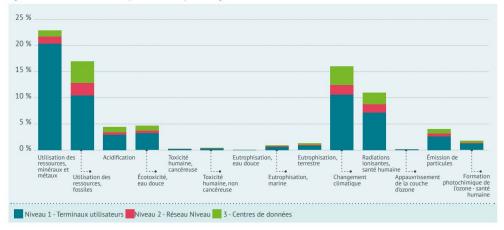
| %           | Energy | GHG | Water | Electricity | Resources |
|-------------|--------|-----|-------|-------------|-----------|
| Users       | 60%    | 63% | 83%   | 44%         | 75%       |
| Networks    | 23%    | 22% | 9%    | 32%         | 16%       |
| Datacenters | 17%    | 15% | 7%    | 24%         | 8%        |

Répartition des impacts du numérique mondial en 2019

Source: green .fr

## How to evaluate them?




## Perimeter

Multi-perimeters

Mutli-steps

### **Multi Criteria**





The Green / EFA - Ponderation of 13 impacts criteria

| EF Impact Category                              | EF Impact Assessment<br>Model                                                                                              | EF Impact Category indicators                                  | Source                                                |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|
| Climate Change                                  | Bern model - Global<br>Warming Potentials<br>(GWP) over a 100 year<br>time horizon.                                        | kg CO <sub>2</sub> equivalent                                  | Intergovernmental<br>Panel on Climate<br>Change, 2007 |
| Ozone Depletion                                 | EDIP model based on<br>the ODPs of the World<br>Meteorological<br>Organization (IVMO)<br>over an infinite time<br>horizon. | kg CFC-11 equivalent                                           | WMO, 1999                                             |
| Ecotoxicity for<br>aquatic fresh water          | USEtox model                                                                                                               | CTUe (Comparative Toxic Unit for ecosystems)                   | Rosenbaum et al.,<br>2008                             |
| Human Toxicity -<br>cancer effects              | USEtox model                                                                                                               | CTUh (Comparative Toxic Unit for humans)                       | Rosenbaum et al.,<br>2008                             |
| Human Toxicity –<br>non-cancer effects          | USEtox model                                                                                                               | CTUh (Comparative Toxic Unit for humans)                       | Rosenbaum et al.,<br>2008                             |
| Particulate<br>Matter/Respiratory<br>Inorganics | RiskPoll model                                                                                                             | kg PM2.5 equivalent                                            | Humbert, 2009                                         |
| Ionising Radiation –<br>human health effects    | Human Health effect<br>model                                                                                               | kg U <sup>235</sup> equivalent (to air)                        | Dreicer et al., 1995                                  |
| Photochemical Ozone<br>Formation                | LOTOS-EUROS model                                                                                                          | kg NMVOC equivalent                                            | Van Zelm et al., 2008<br>as applied in ReCiPe         |
| Acidification                                   | Accumulated<br>Exceedance model                                                                                            | mol H+ eq                                                      | Seppälä et al.,2006;<br>Posch et al., 2008            |
| Eutrophication –<br>terrestrial                 | Accumulated<br>Exceedance model                                                                                            | mol N eq                                                       | Seppälä et al.,2006;<br>Posch et al., 2008            |
| Eutrophication –<br>aquatic                     | EUTREND model                                                                                                              | fresh water: kg P equivalent<br>marine: kg N equivalent        | Struijs et al., 2009 as<br>implemented in<br>ReCiPe   |
| Resource Depletion –<br>water                   | Swiss Ecoscarcity<br>model                                                                                                 | m <sup>3</sup> water use related to local<br>scarcity of water | Frischknecht et al.,<br>2008                          |
| Resource Depletion –<br>mineral, fossil         | CML2002 model                                                                                                              | kg antimony (Sb) equivalent                                    | van Oers et al., 2002                                 |
| Land Transformation                             | Soil Organic Matter<br>(SOM) model                                                                                         | Kg (deficit)                                                   | Milà i Canals et al.,<br>2007                         |

Default EF impact [...] for PEF studies

## Life cycle assessment

ISO 14040 ISO 14044

Multi Criteria analysis



https://pre-sustainability.com/

## Why make open evaluations?



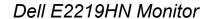


## Because it is a democratic necessity

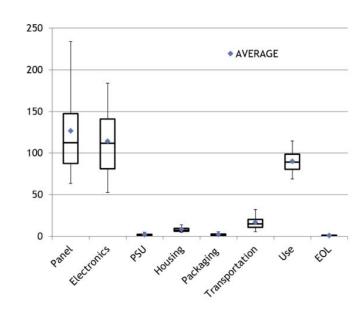







Political orientations

Environmental labeling




## Because the measurements are of poor quality

| Average GWP impact of screen manufacturing (kgCO2e/inch) |              |  |  |  |
|----------------------------------------------------------|--------------|--|--|--|
| Dell (PAIA)                                              | 11,4 to 26,7 |  |  |  |
| Lenovo (PAIA)                                            | 5,7 to 24,5  |  |  |  |
| HP (Other)                                               | 3,3 to 8,6   |  |  |  |
| NegaOctet                                                | 2,94         |  |  |  |
| Base Impacts<br>(ADEME)                                  | ≈ 2,7        |  |  |  |







## Is it possible?

Spoiler: Hardly





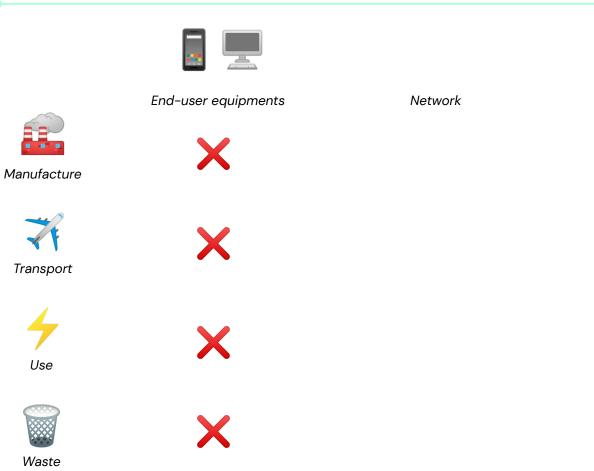














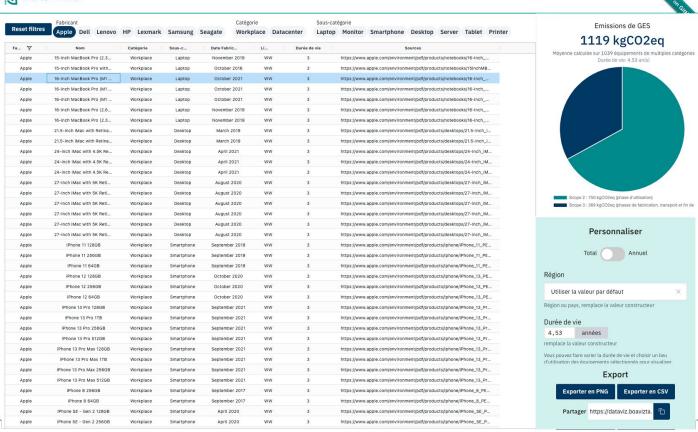

# Measuring the impact of user terminals



### **Perimeter**








On-prem infra

Cloud (As a service)

### datavizta.boavizta.org

#### 3 Datavizta



Measure the impacts related to usage.



## **Perimeter**



End-user equipments



On-prem infra



Cloud (As a service)









Network





## kWh \* Co2eq./kWh

kWh: Power consumption

Co2eq./kWh: Impact of a kwh of electricity

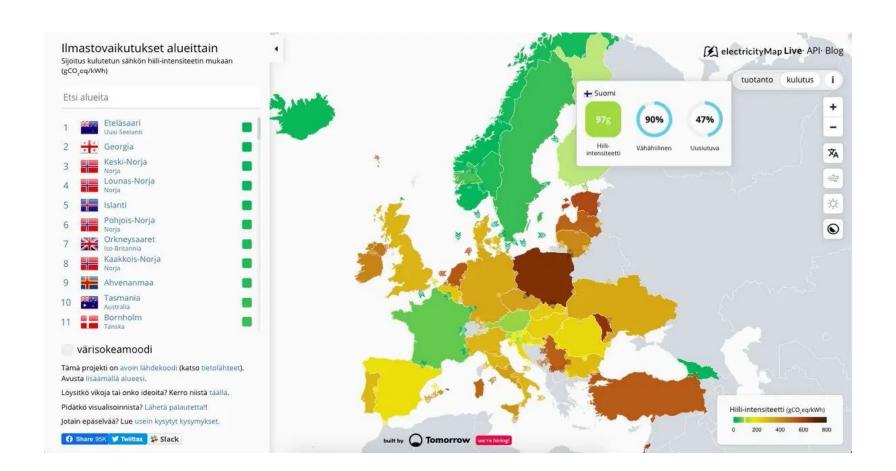
## **kWh:** Power consumption

## **Open-methodology**

Physics

Software sensor

## **Open-Source**

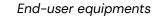









## Impact of a kwh of electricity: Electricity map




## What about the cloud?



## **Perimeter**







On-prem infra



Cloud (As a service)

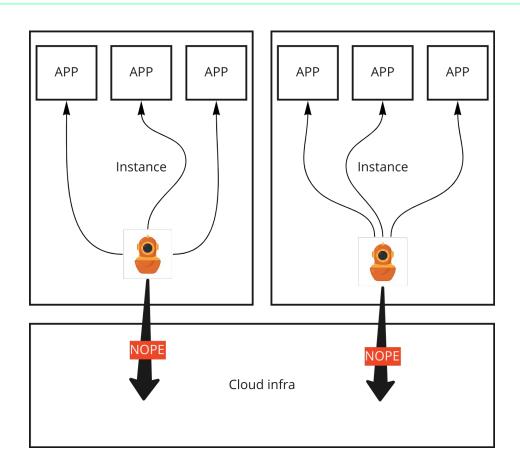








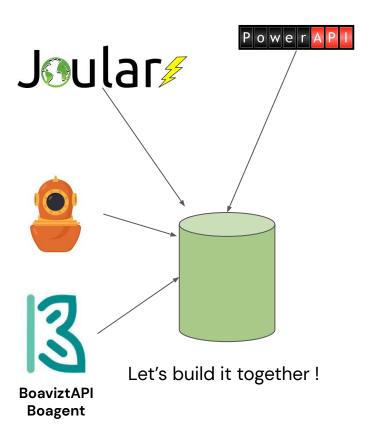





Network



## Where to connect my power meter?






## **Modeling electrical consumption**

## **Open Science**





# Measuring the impacts of manufacturing



## **Perimeter**



End-user equipments



On-prem infra

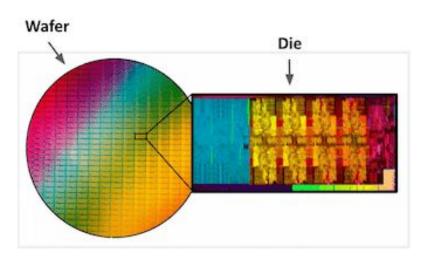
Network

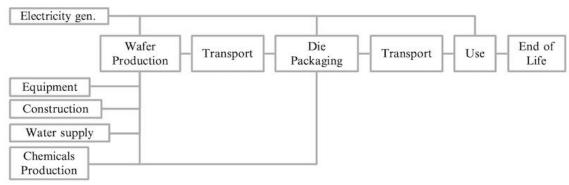


Cloud (As a service)







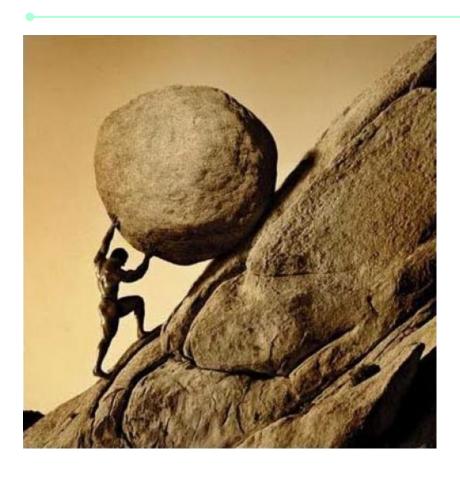








## Die size






## BoaviztAPI: api.boavizta.org/docs

```
"core units": 24,
  "name": "Intel core i7-9800x"
"die_size_per_core": {
  "value": 0.289,
  "unit": "mm2",
  "status": "COMPLETED",
  "source": {
   "1": "https://en.wikichip.org/wiki/intel/mi
"model_range": {
 "value": "core i7",
 "unit": "none",
 "status": "COMPLETED",
 "source": null
```

```
"gwp": {
 "manufacture": 23.8,
 "use": 1200,
  "unit": "kgC02eq"
},
"pe": {
 "manufacture": 353,
 "use": 40770,
 "unit": "MJ"
},
"adp": {
 "manufacture": 0.02,
 "use": 0 000203,
  "unit": "kgSbeq"
```

## Congratulations! You have the least bad evaluation



#### In the meantime

- 1. Refuse
- 2. Reduce
- 3. Reuse
- 4. Recycle
- 5. Return